Package: IRon 0.1.4
Nuno Moniz
IRon: Solving Imbalanced Regression Tasks
Imbalanced domain learning has almost exclusively focused on solving classification tasks, where the objective is to predict cases labelled with a rare class accurately. Such a well-defined approach for regression tasks lacked due to two main factors. First, standard regression tasks assume that each value is equally important to the user. Second, standard evaluation metrics focus on assessing the performance of the model on the most common cases. This package contains methods to tackle imbalanced domain learning problems in regression tasks, where the objective is to predict extreme (rare) values. The methods contained in this package are: 1) an automatic and non-parametric method to obtain such relevance functions; 2) visualisation tools; 3) suite of evaluation measures for optimisation/validation processes; 4) the squared-error relevance area measure, an evaluation metric tailored for imbalanced regression tasks. More information can be found in Ribeiro and Moniz (2020) <doi:10.1007/s10994-020-05900-9>.
Authors:
IRon_0.1.4.tar.gz
IRon_0.1.4.zip(r-4.5)IRon_0.1.4.zip(r-4.4)IRon_0.1.4.zip(r-4.3)
IRon_0.1.4.tgz(r-4.4-x86_64)IRon_0.1.4.tgz(r-4.4-arm64)IRon_0.1.4.tgz(r-4.3-x86_64)IRon_0.1.4.tgz(r-4.3-arm64)
IRon_0.1.4.tar.gz(r-4.5-noble)IRon_0.1.4.tar.gz(r-4.4-noble)
IRon_0.1.4.tgz(r-4.4-emscripten)IRon_0.1.4.tgz(r-4.3-emscripten)
IRon.pdf |IRon.html✨
IRon/json (API)
# Install 'IRon' in R: |
install.packages('IRon', repos = c('https://nunompmoniz.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nunompmoniz/iron/issues
- NO2Emissions - NO2Emissions
- accel - Acceleration
evaluation-metricsimbalance-dataimbalanced-learningmachine-learningregression
Last updated 2 years agofrom:e7ad573698. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | OK | Nov 07 2024 |
R-4.5-linux-x86_64 | OK | Nov 07 2024 |
R-4.4-win-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-aarch64 | OK | Nov 07 2024 |
R-4.3-win-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-aarch64 | OK | Nov 07 2024 |
Exports:eval.statsphiphi.controlphiPlotsersera
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecorrplotcowplotcpp11DEoptimRDerivdoBydplyrfansifarverFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynompurrrquantregR6RColorBrewerRcppRcppEigenrlangrobustbaserstatixscalesscamSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Acceleration | accel |
Predictive Modelling Evaluation Statistics | eval.stats |
NO2Emissions | NO2Emissions |
Obtain the relevance of data points | phi |
Generation of relevance function | phi.control |
Plot of phi versus y and boxplot of y | phiPlot |
Non-Standard Evaluation Metrics | ser |
Squared Error-Relevance Area (SERA) | sera |